Test Results: C++11's minstd_rand



Implementation

In 1993, George Marsaglia and Stephen Sullivan wrote papers critical of Park and Miller's 1988 implementation of the Lehmer Generator, prompting the pair to publish a reply suggesting that the a constant should be updated. The new recommendation is for a to be set at 48271.

Currently, C++11's minstd_rand function uses this revised constant.



Test Results

Period Length Test
SEEDNumber indicates how many results could be obtained before the generator fell into a loop.
1138-PASS
65535-PASS
8675309-PASS
16777216-PASS
123456789-PASS


Dice Roll Test
This generator produced an ideal distribution of outcomes.


Dartboard Test
SEEDMinimum of 6,000 darts placed needed to pass.
11386999PASS
655356950PASS
86753097021PASS
167772167001PASS
1234567897001PASS


Crush Test
SEED70% or higher required to pass.
1138101%PASS
65535101%PASS
8675309101%PASS
16777216101%PASS
123456789101%PASS


Plot Test
An ideal result for this test.


Example Output
652957416564540921436846181722655892174568451182620584886368037116151493304795040955634223791228751101169354987810861705891874743761795202651110445994321043717782006109091411837490551359511
9101182101243148231872710480156836052810900393971794897440126658802561112468517642944431498068974107059852318148223259880380041181748617021488991842586675117118112615771258711147632891899123449
943500809204184931011985802981312630931502665566189929258038027145615407216675219248531703916206111549972628230886815476270139899163345927291177025777261067658322162230055620789508211124256181
2058353361114919308210491755656468509141875725961962338617828612950109278407511392630646061299681182478600145664698789713940318083804581417804862702147359176824933512786161231398858553972899242
1646917986680973913190705344113426382091580003826482961641210638452637922003717979899910960632025122126031035331502247500058623771457203786260149145320016956351728136658541136018451751722076
345147237424143801188381122040385205216333382731571600251359325571178928730310426044201278690375688109551606568172860187414510346449114852494210096443301547568412308671110621607924994583520
396681588125273769620567913909132185865775428372085063120196578157115297873999948513874419876632083931375102240985114242259141415103283129072991720282567435429097674965315614080413261852903443
95568315016851124431824638634237203756182718371968443391214209407041748521251319528980755840826159283296312829434321976477533291010174661574127176285352766308944218941798945464249551084850351
4225610266436068402047336138191276610573251690117424502812983676701343044522186578582630935313777359158922151787147875261199856475013111730699971693156615405071399825071112041935875003973
6084114871792016252177519913217448181781957118545211617051831243752920417931256339578101354767605109768451513599200125834496621423820387008513661486396995293215728189917255810291404352046215481
15046232331771138603116003469639871509162771324714993704141615383000102157043017067241161364653575127933074715347353051464537096165598542328856135256608795010495100221759039232122684913978255350
402647771483500321293915574118428320651995368610429944177768827391547250355213561083926581878112358682620975901271066548014171371426316311068331964985782177096222612360751178963244591124924280
2095905485135157261812086476181940930429236186943213672727747030630411059679471882788864445829457700092260135081326810612857671102859672196179822086804442121789953126007942421145419231155423223
1136601196964118560848895623905149426191314423111459026601131005081141699091766913910185944522139386064923724372216088988581558164410686982582204122239510015373911059539697570176935860409433
490007363760531315374160900783332630150481000149198496189117048113079380281604811435182266430115709396281031723971545465642022396221995617947799966158126295611113886630455992877371613627637
40305290210395305511212839813212078631928235335906353455658409232010171587109157002951810706720991618421772875134123226036414379760381574891964688890444179383217613848370095962976231159239092
64882005329127051534359265654489199510178218918329445301739151230113829480611119882844327001994453552071429890627212604133745371844185844543137530023128302581216580752192333726591579894074
16275737901072675242112839376520676914549367144158733388801837085870192979519917458950102497848421390913924187728559610855520572082356647170642208147023612318758109247686202962142822644494507122
1072549657150873117134943463012224611928685467662977012051521784478123290825650011606512388976881853179439139338418486012182416392188535507958011616560211201214778919955363031153895928426988249
17492072201219683874209609934921196471746303748391128059026941890714163036485750880063816926098068051116645335731851339834664154155289219912811821913380249180130930315359817301501176155733477284


A WFTID Website